organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-Oxo-*N*-phenylisoindoline-2-carboxamide

Bushra Maliha,^a Ishtiaq Hussain,^a Hamid Latif Siddiqui,^a Muhammad Ilyas Tariq^b and Masood Parvez^c*

^aInstitute of Chemistry, University of the Punjab, Lahore, Pakistan, ^bDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and ^cDepartment of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada

Correspondence e-mail: parvez@ucalgary.ca

Received 6 November 2007; accepted 7 November 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.097; data-to-parameter ratio = 16.1.

The title molecule, $C_{15}H_{12}N_2O_2$, is essentially planar. The crystal structure is stabilized by an extensive hydrogenbonded network. There are two intramolecular hydrogen bonds resulting in six-membered rings in graph-set patterns S(6) and three intermolecular interactions. Two of these are $C-H\cdots O$ intermolecular hydrogen bonds that result in dimers, representing $R_2^2(10)$ graph-set patterns, and a C- $H\cdots N$ hydrogen bond leading to the formation of chains of molecules along the *b* axis.

Related literature

For related literature, see: Benati *et al.* (2003); Berger *et al.* (1999); Bernstein *et al.* (1994); Cignarella *et al.* (1981); Mancilla *et al.* (2007).

Experimental

Crystal data

 $\begin{array}{l} C_{15}H_{12}N_{2}O_{2}\\ M_{r}=252.27\\ Monoclinic, P2_{1}/c\\ a=12.905 \ (4) \ {\rm \AA}\\ b=5.619 \ (1) \ {\rm \AA}\\ c=17.161 \ (6) \ {\rm \AA}\\ \beta=102.228 \ (17)^{\circ} \end{array}$

 $V = 1216.2 \text{ (6) } \text{\AA}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 173 (2) K $0.35 \times 0.10 \times 0.06 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)5034 measured reflections
2768 independent reflections
2119 reflections with $I > 2\sigma(I)$
 $R_{\rm int} = 0.021$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	172 parameters
$wR(F^2) = 0.097$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
2768 reflections	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2\cdots O1^{i}$	0.95	2.41	3.3105 (17)	159
$C7 - H7B \cdots O2^{ii}$	0.99	2.57	3.0746 (17)	112
$C7 - H7B \cdot \cdot \cdot N2^{iii}$	0.99	2.60	3.4695 (18)	147
C11-H11···O2	0.95	2.27	2.8833 (19)	122
$N2 - H2N \cdots O1$	0.88	1.95	2.6803 (15)	140

Symmetry codes: (i) -x + 2, -y - 1, -z + 1; (ii) $-x + 2, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) $-x + 2, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *COLLECT* (Hooft, 1998); cell refinement: *HKL DENZO* (Otwinowski & Minor, 1997); data reduction: *SCALE*-*PACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SAPI91* (Fan, 1991); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2558).

References

- Benati, L., Calestani, G., Leardini, R., Minozzi, M., Spagnolo, P. & Strazzari, S. (2003). Org. Lett. 5, 1313–1316.
- Berger, D., Citarella, R., Dutia, M., Grenberger, L., Hallett, W., Paul, R. & Poweel, D. (1999). J. Med. Chem. 42, 2145–2161.
- Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, edited by H.-B. Bürgi & J. D. Dunitz, Vol. 2, pp. 431–507. New York: VCH. Blessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.
- Cignarella, G., Sanna, P., Miele, E., Anania, V. & Desole, M. S. (1981). J. Med.
- *Chem.* **24**, 1003–1010.
- Fan, H.-F. (1991). SAPI91. Rigaku Corporation, Tokyo, Japan.
- Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Mancilla, T., Correa-Basurto, J. C., Carbajal, K. S. A., Escalante, E. T. J. S. & Ferrara, J. T. (2007). *J. Mex. Chem. Soc.* **51**, 96–102.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, 04728 [doi:10.1107/S1600536807056929]

1-Oxo-N-phenylisoindoline-2-carboxamide

B. Maliha, I. Hussain, H. L. Siddiqui, M. I. Tariq and M. Parvez

Comment

Isoindole type compounds are important as intermediates for the synthesis of novel multidrugs resistance reversal agents (Berger *et al.*, 1999). They have also shown diuretic activity (Cignarella *et al.*, 1981). Several isoindoles have exhibited anti-inflammatory and analgesic activity (Mancilla *et al.*, 2007). In our efforts to isolate chromagens responsible for color development in the reaction of *N*-phenylurea with *ortho* phthaldehyde (OPTA), the title compound, (I), was prepared, the crystal structure of which is presented in this article.

The structure of (I) is composed of an essentially planar molecule comprised of an isoindole ring that is briged through a carboxamide group to a phenyl ring (Fig. 1). A mean-planes calculation through all non-hydrogen atoms revealed that C12 and N1 atoms lie 0.057 (1) and 0.052 (1) Å above and below, respectively, from the plane. The angle between mean-planes of the isoindole ring and the phenyl ring is 2.62 (8)°. The structure is stabilized by two intramolecular hydrogen bonds N2—H2N···O1 and C11—H11A···O2 that result in six membered rings which may be best defined in graph set patterns S(6) (Bernstein *et al.*, 1994); details of hydrogen bonding geometry have been provided in the Table. In addition, rather weak intermolecular interactions of two distinct types are present in the crystal (Fig. 2). The C—H···O type intermolecular H-bonding results in dimers forming ten-membered rings ···O1—C8—C1—C2—H2···O1ⁱ and ···O2—C9—N1—C7—H7b···O2ⁱⁱ, both representing $R_2^2(10)$ graph set patterns (Bernstein *et al.*, 1994). The C—H···N type H-bonding results in chains of molecules in a pattern ···N2—C9—N1—C7—H7B···N2ⁱⁱⁱ along the b-aixs. Symmetry codes as in the bydrogen bond geometry table.

The structure of 2-(bis(1-oxo-2,3-dihydroisoindol-2-yl)methyl)tetrahydrothiophene (Benati *et al.*, 2003) which is somewhat related to the title compound has been reported.

Experimental

A mixture of *o*-phthaldehyde (0.67 g, 200 mmol) and *N*-phenylurea (0.68 g, 200 mmol) in 100 ml of ethanol was refluxed for 12 hrs. The contents of flask were then left to stand for 48 hrs. at room temperature. The crystals of (I) thus formed were filtered, washed with hexane, ether and ethanol and were dried at room temperature. Crystals suitable for X-ray diffraction were grown from a solution of acetone by slow evaporation at room temperature.

Refinement

H-atoms were included in the refinements at geometrically idealized positions with C— $H_{aromatic} = 0.95$, CH₂ = 0.99 and N—H = 0.88 Å and $U_{iso} = 1.2$ times U_{eq} of the atoms to which they were bonded. The final difference map was free of any chemically significant features.

Figures

Fig. 1. The molecular structure with displacement ellipsoids plotted at 50% probability level; intermolecular interactions have been indicated by broken lines.

Fig. 2. H-bonding interactions in the unit cell of (I); H-atoms not involved in interactions have been ignored. H-bonds are shown as dashed lines.

1-Oxo-N-phenylisoindoline-2-carboxamide

Crystal data

$C_{15}H_{12}N_2O_2$	$F_{000} = 528$
$M_r = 252.27$	$D_{\rm x} = 1.378 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 5034 reflections
a = 12.905 (4) Å	$\theta = 2.6 - 27.5^{\circ}$
<i>b</i> = 5.6190 (10) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 17.161 (6) Å	T = 173 (2) K
$\beta = 102.228 \ (17)^{\circ}$	Needle, colorless
V = 1216.2 (6) Å ³	$0.35\times0.10\times0.06~mm$
Z = 4	

Data collection

Nonius KappaCCD diffractometer	2768 independent reflections
Radiation source: fine-focus sealed tube	2119 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.021$
T = 173(2) K	$\theta_{\rm max} = 27.5^{\circ}$
ω and ϕ scans	$\theta_{\min} = 2.6^{\circ}$
Absorption correction: multi-scan (SORTAV; Blessing, 1997)	$h = -16 \rightarrow 16$
$T_{\min} = 0.968, T_{\max} = 0.994$	$k = -6 \rightarrow 7$
5034 measured reflections	$l = -22 \rightarrow 22$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.097$	$w = 1/[\sigma^2(F_o^2) + (0.038P)^2 + 0.39P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\text{max}} = 0.001$
2768 reflections	$\Delta \rho_{max} = 0.17 \text{ e } \text{\AA}^{-3}$
172 parameters	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Special details

methods

Experimental. IR spectra (nujol) showed vibrations 3425 cm⁻¹ (N—H), 1714 and 1680 cm⁻¹ (C=O), 1600 and 155.8 cm⁻¹ (C=C), 1150 cm⁻¹ (C—O). ¹H-NMR (DMSO-d₆); δ: 4.92 (s –CH₂–), 7.10–7.93 (aromatic ring protons, 9H), 10.72 (s, NH). ¹³C-NMR (DMSO-d₆); δ: 48.59 (–CH₂–), 123.37 (C₄), 124.08 (C₃), 128.65 (C₅), 130.94 (C₆), 133.93 (C₂), 141.07 (C₁), 150.25 (C₉), 169.44 (C₈) and 120.06, 124.86, 129.03, 137.50 (N—Ph carbons). Anal. Calcd for C₁₅H₁₂N₂O₂. Required: C, 71.42; H, 4.79; N, 11.0; O, 12.68; Found: C, 71.40; H, 4.80; N, 11.07; O, 12.70. m.p. 441 K. m/z; 252.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.92562 (7)	-0.27832 (16)	0.39885 (5)	0.0328 (2)
O2	0.89390 (8)	0.31349 (17)	0.24855 (6)	0.0406 (3)
N1	0.97796 (8)	0.07840 (18)	0.34984 (6)	0.0263 (2)
N2	0.80821 (8)	-0.01677 (19)	0.28210 (6)	0.0297 (3)
H2N	0.8169	-0.1366	0.3159	0.036*
C1	1.09874 (10)	-0.1015 (2)	0.44905 (7)	0.0268 (3)
C2	1.14801 (11)	-0.2514 (2)	0.51004 (8)	0.0315 (3)
H2	1.1139	-0.3908	0.5234	0.038*
C3	1.24880 (11)	-0.1894 (3)	0.55062 (8)	0.0356 (3)
H3	1.2846	-0.2866	0.5932	0.043*
C4	1.29830 (11)	0.0143 (3)	0.52972 (8)	0.0380 (3)
H4	1.3676	0.0532	0.5584	0.046*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C5	1.24877 (11)	0.1619 (2)	0.46793 (8)	0.0346 (3)
H5	1.2834	0.2991	0.4535	0.041*
C6	1.14717 (10)	0.1021 (2)	0.42818 (7)	0.0281 (3)
C7	1.07353 (10)	0.2269 (2)	0.36116 (8)	0.0296 (3)
H7A	1.0587	0.3916	0.3761	0.036*
H7B	1.1030	0.2308	0.3124	0.036*
C8	0.99162 (10)	-0.1207 (2)	0.39860 (7)	0.0263 (3)
C9	0.89044 (10)	0.1374 (2)	0.28902 (7)	0.0284 (3)
C10	0.71058 (10)	-0.0067 (2)	0.22699 (8)	0.0301 (3)
C11	0.68394 (11)	0.1681 (3)	0.16870 (8)	0.0360 (3)
H11	0.7324	0.2927	0.1648	0.043*
C12	0.58577 (11)	0.1588 (3)	0.11620 (9)	0.0419 (4)
H12	0.5675	0.2784	0.0765	0.050*
C13	0.51455 (12)	-0.0206 (3)	0.12064 (9)	0.0452 (4)
H13	0.4481	-0.0259	0.0840	0.054*
C14	0.54067 (12)	-0.1927 (3)	0.17890 (10)	0.0480 (4)
H14	0.4916	-0.3158	0.1828	0.058*
C15	0.63785 (11)	-0.1869 (3)	0.23162 (9)	0.0401 (3)
H15	0.6552	-0.3067	0.2713	0.048*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0361 (5)	0.0257 (5)	0.0383 (5)	-0.0031 (4)	0.0116 (4)	0.0042 (4)
O2	0.0453 (6)	0.0332 (5)	0.0402 (6)	-0.0068 (4)	0.0016 (4)	0.0125 (4)
N1	0.0310 (6)	0.0215 (5)	0.0280 (5)	-0.0004 (4)	0.0093 (4)	0.0015 (4)
N2	0.0330 (6)	0.0276 (5)	0.0290 (6)	-0.0025 (4)	0.0080 (4)	0.0037 (4)
C1	0.0315 (6)	0.0226 (6)	0.0286 (6)	0.0032 (5)	0.0119 (5)	-0.0018 (5)
C2	0.0375 (7)	0.0267 (6)	0.0328 (7)	0.0051 (5)	0.0131 (6)	0.0026 (5)
C3	0.0383 (7)	0.0360 (7)	0.0333 (7)	0.0105 (6)	0.0094 (6)	0.0028 (6)
C4	0.0322 (7)	0.0410 (8)	0.0398 (8)	0.0035 (6)	0.0054 (6)	-0.0033 (6)
C5	0.0349 (7)	0.0296 (7)	0.0403 (8)	-0.0023 (6)	0.0105 (6)	-0.0016 (6)
C6	0.0330 (7)	0.0237 (6)	0.0296 (7)	0.0019 (5)	0.0113 (5)	-0.0023 (5)
C7	0.0336 (7)	0.0223 (6)	0.0336 (7)	-0.0033 (5)	0.0084 (5)	0.0006 (5)
C8	0.0340 (7)	0.0200 (6)	0.0281 (6)	0.0025 (5)	0.0139 (5)	-0.0004 (5)
C9	0.0347 (7)	0.0248 (6)	0.0272 (6)	0.0002 (5)	0.0097 (5)	-0.0012 (5)
C10	0.0314 (7)	0.0302 (6)	0.0302 (7)	0.0011 (5)	0.0100 (5)	-0.0036 (5)
C11	0.0335 (7)	0.0347 (7)	0.0406 (8)	-0.0003 (6)	0.0092 (6)	0.0050 (6)
C12	0.0356 (7)	0.0448 (8)	0.0444 (8)	0.0033 (6)	0.0067 (6)	0.0085 (7)
C13	0.0339 (8)	0.0493 (9)	0.0494 (9)	-0.0019 (7)	0.0024 (7)	0.0009 (7)
C14	0.0407 (8)	0.0425 (8)	0.0583 (10)	-0.0122 (7)	0.0048 (7)	0.0028 (7)
C15	0.0419 (8)	0.0341 (7)	0.0434 (8)	-0.0063 (6)	0.0070 (7)	0.0043 (6)

Geometric parameters (Å, °)

O1—C8	1.2293 (15)	C5—C6	1.3851 (19)
O2—C9	1.2148 (16)	С5—Н5	0.9500
N1—C8	1.3859 (15)	C6—C7	1.5016 (18)
N1—C9	1.4057 (17)	С7—Н7А	0.9900

N1—C7	1.4676 (16)	С7—Н7В	0.9900
N2—C9	1.3556 (16)	C10-C11	1.3921 (19)
N2—C10	1.4073 (17)	C10—C15	1.3944 (19)
N2—H2N	0.8800	C11—C12	1.391 (2)
C1—C6	1.3865 (17)	C11—H11	0.9500
C1—C2	1.3883 (18)	C12—C13	1.377 (2)
C1—C8	1.4715 (18)	C12—H12	0.9500
C2—C3	1.384 (2)	C13—C14	1.380 (2)
С2—Н2	0.9500	С13—Н13	0.9500
C3—C4	1.394 (2)	C14—C15	1.383 (2)
С3—Н3	0.9500	C14—H14	0.9500
C4—C5	1.391 (2)	C15—H15	0.9500
C4—H4	0.9500		
C8—N1—C9	128 19 (10)	N1—C7—H7B	111.3
C8 = N1 = C7	112 54 (10)	С6—С7—Н7В	111.3
C9 - N1 - C7	118.99 (10)	H7A - C7 - H7B	109.2
C9 = N2 = C10	127 29 (11)	01 - C8 - N1	105.2 125.74 (12)
C9 = N2 = H2N	116.4	01 - 03 - 01	128.03(11)
C10-N2-H2N	116.4	N1 - C8 - C1	106.22(10)
C_{6} C_{1} C_{2}	122 40 (12)	$\Omega^2 - C^9 - N^2$	12640(12)
C_{6} C_{1} C_{8}	109 11 (11)	02 - 09 - 112	119 71 (12)
C_{2} C_{1} C_{8}	128 47 (12)	$N_{2} - C_{9} - N_{1}$	113.89 (11)
C_{3} C_{2} C_{1} C_{2} C_{1}	117 27 (12)	$C_{11} - C_{10} - C_{15}$	119.12 (13)
C3—C2—H2	121.4	C_{11} C_{10} N_2	124 12 (12)
C1 - C2 - H2	121.4	C15-C10-N2	11675(12)
$C_2 - C_3 - C_4$	120.69(13)	C12 - C11 - C10	119.41 (13)
С2—С3—Н3	119.7	C12—C11—H11	120.3
C4—C3—H3	119.7	C10—C11—H11	120.3
$C_{5} - C_{4} - C_{3}$	121.61 (13)	C_{13} C_{12} C_{11}	121.24 (14)
C_{2}^{-} C_{4}^{-} H_{4}^{-}	119.2	C13 - C12 - H12	121.24 (14)
$C_3 - C_4 - H_4$	119.2	C11 - C12 - H12	119.1
C_{6}	117.71 (13)	C12 - C13 - C14	119.1
C6—C5—H5	121.1	C12 - C13 - H13	120.4
C4-C5-H5	121.1	C14_C13_H13	120.1
$C_{-}^{-}C_{-}^{-}C_{-}^{-}C_{-}^{-}$	121.1 120.30(12)	C_{13} C_{14} C_{15} C_{15}	120.4 120.41(14)
$C_{5} - C_{6} - C_{7}$	120.50(12) 130.05(12)	C13—C14—H14	119.8
$C_1 - C_6 - C_7$	109.66 (11)	C15-C14-H14	119.8
N1 - C7 - C6	102.34(10)	C_{14} C_{15} C_{10}	120 52 (14)
N1-C7-H7A	111.3	C_{14} C_{15} H_{15}	119.7
C6_C7_H7A	111.3	C10-C15-H15	119.7
$C(C_1, C_2, C_2)$	0.42 (19)	C_{10}^{2} C_{10}^{1} C_{10}^{2} C_{10}^{1}	2((2)
$C_0 = C_1 = C_2 = C_3$	0.42 (18)	$C_2 = C_1 = C_8 = O_1$	-2.6(2)
$C_8 = C_1 = C_2 = C_3$	-1/7.84(12)	C_{0} C_{1} C_{8} N_{1}	-1.61(13)
$C_1 - C_2 - C_3 - C_4$	-0./9(19)	$C_2 = C_1 = C_2 = C_1 = C_2$	1/0.84 (12)
12 - 13 - 14 - 15	0.1(2)	$C_{10} = N_2 = C_9 = 0_2$	0.3(2)
$C_{4} = C_{5} = C_{6} = C_{1}$	1.0(2)	$C_{10} = N_{12} = C_{2} = N_{1}$	-1/9.39 (11)
$\begin{array}{c} \mathbf{C}_{4} \\ \mathbf{C}_{5} \\ \mathbf{C}_{6} \\ \mathbf{C}_{7} \\ \mathbf{C}$	-1.35(19)	$C_{0} = N_{1} = C_{0} = C_{2}$	-1/5./1(12)
	1/8.04 (13)	$C_{1} = N_{1} = C_{2} = N_{2}^{2}$	-2.24(1/)
C2-C1-C6-C5	0.67 (19)	C8—N1—C9—N2	4.20 (17)

supplementary materials

C8—C1—C6—C5	179.23 (11)	C7—N1—C9—N2	177.67 (10)
C2-C1-C6-C7	-179.32 (11)	C9—N2—C10—C11	0.9 (2)
C8—C1—C6—C7	-0.76 (13)	C9—N2—C10—C15	-179.93 (12)
C8—N1—C7—C6	-3.79 (13)	C15-C10-C11-C12	-0.3 (2)
C9—N1—C7—C6	-178.24 (10)	N2-C10-C11-C12	178.82 (13)
C5—C6—C7—N1	-177.34 (13)	C10-C11-C12-C13	-0.2 (2)
C1—C6—C7—N1	2.65 (13)	C11-C12-C13-C14	0.8 (2)
C9—N1—C8—O1	-3.3 (2)	C12-C13-C14-C15	-0.8 (3)
C7—N1—C8—O1	-177.10 (12)	C13-C14-C15-C10	0.3 (2)
C9—N1—C8—C1	177.28 (11)	C11-C10-C15-C14	0.2 (2)
C7—N1—C8—C1	3.46 (13)	N2-C10-C15-C14	-178.95 (13)
C6—C1—C8—O1	178.97 (12)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C2—H2···O1 ⁱ	0.95	2.41	3.3105 (17)	159
C7—H7B···O2 ⁱⁱ	0.99	2.57	3.0746 (17)	112
C7—H7B…N2 ⁱⁱⁱ	0.99	2.60	3.4695 (18)	147
С11—Н11…О2	0.95	2.27	2.8833 (19)	122
N2—H2N…O1	0.88	1.95	2.6803 (15)	140
Symmetry adds: (i) $-r+2 - r-1 - r+1$: (ii)	-x+2 $x=1/2$ $-z+1/2$ (iii	(1) - m + 2 + 1/2 - m + 1/2	1/2	

Symmetry codes: (i) -x+2, -y-1, -z+1; (ii) -x+2, y-1/2, -z+1/2; (iii) -x+2, y+1/2, -z+1/2.

